如何在上亿级别用户中检查用户名是否存在?

后端 潘老师 3个月前 (01-31) 122 ℃ (0) 扫码查看

本文主要讲解关于在面试过程中被面试官问,如何在上亿级别用户中检查用户名是否存在相关内容,如此大的数据量确实是非常有挑战性的一个 面试题,让我们来一起看下该使用什么解决方案吧!

前言

不知道大家有没有留意过,在使用一些app或者网站注册的时候,提示你用户名已经被占用了,需要更换一个,而且响应速度很快,这是如何实现的呢?你可能想这不是很简单吗,去数据库里查一下有没有不就行了吗,那么假如用户数量很多,达到数亿级别呢,这又该如何是好?

数据库方案

第一种方案就是查数据库的方案,大家都能够想到,就是直接拿用户名去数据库表匹配,但这种方法会带来如下问题:

  1. 性能问题,延迟高 如果数据量很大,查询速度慢。另外,数据库查询涉及应用程序服务器和数据库服务器之间的网络通信。建立连接、发送查询和接收响应所需的时间也会导致延迟。
  2. 数据库负载过高。频繁执行 SELECT 查询来检查用户名唯一性,每个查询需要数据库资源,包括CPU和I/O。
  3. 可扩展性差。数据库对并发连接和资源有限制。如果注册率继续增长,数据库服务器可能难以处理数量增加的传入请求。垂直扩展数据库(向单个服务器添加更多资源)可能成本高昂并且可能有限制。

缓存方案

为了解决数据库调用用户名唯一性检查的性能问题,引入了高效的Redis缓存。

这个方案最大的问题就是内存占用过大,假如每个用户名需要大约 20 字节的内存。你想要存储10亿个用户名的话,就需要20G的内存。

总内存 = 每条记录的内存使用量 * 记录数 = 20 字节/记录 * 1,000,000,000 条记录 = 20,000,000,000 字节 = 20,000,000 KB = 20,000 MB = 20 GB

布隆过滤器方案

直接缓存判断内存占用过大,有没有什么更好的办法呢?布隆过滤器就是很好的一个选择。

那究竟什么布隆过滤器呢?

布隆过滤器Bloom Filter)是一种数据结构,用于快速检查一个元素是否存在于一个大型数据集中,通常用于在某些情况下快速过滤掉不可能存在的元素,以减少后续更昂贵的查询操作。布隆过滤器的主要优点是它可以提供快速的查找和插入操作,并且在内存占用方面非常高效。

具体的实现原理和数据结构如下图所示:

布隆过滤器的核心思想是使用一个位数组(bit array)和一组哈希函数。

  • 位数组(Bit Array) :布隆过滤器使用一个包含大量位的数组,通常初始化为全0。每个位可以存储两个值,通常是0或1。这些位被用来表示元素的存在或可能的存在。
  • 哈希函数(Hash Functions) :布隆过滤器使用多个哈希函数,每个哈希函数可以将输入元素映射到位数组的一个或多个位置。这些哈希函数必须是独立且具有均匀分布特性。

那么具体是怎么做的呢?

  • 添加元素:如上图所示,当将字符串“xuyang”,“alvin”插入布隆过滤器时,通过多个哈希函数将元素映射到位数组的多个位置,然后将这些位置的位设置为1。
  • 查询元素:当要检查一个元素是否存在于布隆过滤器中时,通过相同的哈希函数将元素映射到位数组的相应位置,然后检查这些位置的位是否都为1。如果有任何一个位为0,那么可以确定元素不存在于数据集中。但如果所有位都是1,元素可能存在于数据集中,但也可能是误判。

本身redis支持布隆过滤器的数据结构,我们用代码简单实现了解一下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

public class BloomFilterExample {
    public static void main(String[] args) {
        JedisPoolConfig poolConfig = new JedisPoolConfig();
        JedisPool jedisPool = new JedisPool(poolConfig, "localhost", 6379);

        try (Jedis jedis = jedisPool.getResource()) {
            // 创建一个名为 "usernameFilter" 的布隆过滤器,需要指定预计的元素数量和期望的误差率
            jedis.bfCreate("usernameFilter", 10000000, 0.01);
            
            // 将用户名添加到布隆过滤器
            jedis.bfAdd("usernameFilter", "alvin");
            
            // 检查用户名是否已经存在
            boolean exists = jedis.bfExists("usernameFilter", "alvin");
            System.out.println("Username exists: " + exists);
        }
    }
}

在上述示例中,我们首先创建一个名为 “usernameFilter” 的布隆过滤器,然后使用 bfAdd 将用户名添加到布隆过滤器中。最后,使用 bfExists 检查用户名是否已经存在。

优点:

  • 节约内存空间,相比使用哈希表等数据结构,布隆过滤器通常需要更少的内存空间,因为它不存储实际元素,而只存储元素的哈希值。如果以 0.001 误差率存储 10 亿条记录,只需要 1.67 GB 内存,对比原来的20G,大大的减少了。
  • 高效的查找, 布隆过滤器可以在常数时间内(O(1))快速查找一个元素是否存在于集合中,无需遍历整个集合。
  • 占用空间小,因为他是不存储实际数据的。
  • 保密性非常好,不存储原始数据,别人也不知道0和1是什么。
  • 它底层是基于位数组的,基于数组的特性查询和插入是非常快的。

缺点:

  • 误判率存在:布隆过滤器在判断元素是否存在时,有一定的误判率。这意味着在某些情况下,它可能会错误地报告元素存在,但不会错误地报告元素不存在。
  • 不能删除元素:布隆过滤器通常不支持从集合中删除元素,因为删除一个元素会影响其他元素的哈希值,增加了误判率。

总结

Redis 布隆过滤器的方案为大数据量下唯一性验证提供了一种基于内存的高效解决方案,它需要在内存消耗和错误率之间取得一个平衡点。当然布隆过滤器还有更多应用场景,比如:

  • 解决Redis缓存穿透
  • 在爬虫系统中,我们需要对 URL 进行去重,已经爬过的网页就可以不用爬了。但是URL 太多了,几千万几个亿,如果用一个集合装下这些 URL 地址那是非常浪费空间的。这时候就可以考虑使用布隆过滤器。它可以大幅降低去重存储消耗,只不过也会使得爬虫系统错过少量的页面。
  • 邮箱系统的垃圾邮件过滤功能也普遍用到了布隆过滤器,因为用了这个过滤器,所以平时也会遇到某些正常的邮件被放进了垃圾邮件目录中
  • 新闻推荐、文章推荐等等。

以上就是关于如何在上亿级别用户中检查用户名是否存在相关的全部内容,以后遇到面试官问你从海量数据中判断某个数据是否存在时,你应该知道怎么回答了吧!希望对你有帮助。欢迎持续关注潘子夜个人博客,学习愉快哦!


版权声明:本站文章,如无说明,均为本站原创,转载请注明文章来源。如有侵权,请联系博主删除。
本文链接:https://www.panziye.com/back/12814.html
喜欢 (0)
请潘老师喝杯Coffee吧!】
分享 (0)
用户头像
发表我的评论
取消评论
表情 贴图 签到 代码

Hi,您需要填写昵称和邮箱!

  • 昵称【必填】
  • 邮箱【必填】
  • 网址【可选】